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Executive Summary 

This white paper synthesizes findings from a collaborative workshop on Earth 
Observation AI Foundation Models held as a Special Session of 2025 IAC in Sydney, 
Australia.  

1. Introduction 

1.1 Background 

Satellite-based remote sensing generates vast quantities of imagery across multiple 
modalities—optical, synthetic aperture radar (SAR), hyperspectral, and others. 
However, the development of robust AI systems for analysing this data faces unique 
challenges compared to terrestrial computer vision applications. These include: 

● Limited annotated training data, particularly for specialized modalities 
● Extreme variability in imaging conditions and environmental contexts 
● Computational and power constraints of space-qualified hardware 
● Radiation-induced bit flips and hardware faults in orbital environments 
● Need for rapid adaptation to novel categories and changing conditions 

Traditional approaches requiring extensive labelled datasets and task-specific model 
architectures prove inadequate for the dynamic requirements of space-based AI 
systems. This workshop explored physics-driven approaches that incorporate domain 
knowledge from imaging systems and atmospheric physics into AI architectures, 
enabling more efficient learning and robust generalization. 

1.2 Workshop Participants and Focus Areas 

Over 70 participants from arounds the globe participated in this IAC Special Session 
representing mix of academia, research institutes, space agencies and commercial 
companies. The workshop was organised and hosted by Prof. Rafael Kargren of ESA / 
SmartSAT CRC 



Keynote presenters included Prof. Tat-Jun Chin of University of Adelaide's AI for Space 
Group and Associate Prof. Bihan Wen of Nanyang Technological University's, exploring 
the intersection of artificial intelligence, computational imaging, and space-based 
remote sensing. The research addresses three critical challenges: data scarcity in 
specialized imaging modalities, AI generalization across novel scenarios, and reliable 
edge computing deployment in space environments. 

Second part of workshop was hands-on discussion in groups focusing to engage the 
audience to discuss tangible use cases for AI EO foundation models and barrier 
identification and solution mapping. At the end of the workshop each table presented 
shortly their findings and suggestions. 

 

2. Challenge 1: Data Scarcity and Synthetic Data Generation 

2.1 The Problem of Limited Training Data 

While optical satellite imagery benefits from decades of archived data and commercial 
availability (Sentinel-2, Landsat, etc.), specialized modalities face severe data scarcity: 

● SAR imagery: Complex acquisition requiring specialized satellites, weather-
independent but expensive 

● Polarimetric SAR (PolSAR): Even more limited, with annotation costs exceeding 
$50 per image 

● Hyperspectral imagery: Limited satellite platforms, specialized ground truth 
requirements 

● High-resolution commercial imagery: Licensing restrictions and limited 
geographic coverage 

Traditional approaches requiring 10,000+ annotated examples per class prove 
impractical for many remote sensing applications, particularly for rare events 
(disasters, maritime incidents) or novel infrastructure types. 

2.2 Customized SAR Image Simulation (University of Adelaide) 

The University of Adelaide team developed SN6-SAROPT, a novel pipeline for generating 
synthetic PolSAR images with automatic annotation: 

Methodology: 

1. 3D Model Extraction from OpenStreetMap (OSM): Retrieve building footprints, 
heights, and semantic labels 

2. Single-Look Complex (SLC) Simulation: Generate SAR backscatter using ray-
tracing and electromagnetic scattering models 

3. Polarimetric Synthesis: Create full PolSAR imagery (HH, HV, VV polarizations) 



Technical Implementation: 

● Integration with Blender 3D engine for geometric modelling 
● Physical SAR simulation engine accounting for:  

o Incidence angle dependencies 
o Multi-bounce scattering from building facades 
o Volumetric scattering from vegetation 
o Surface roughness characteristics 

Dataset Characteristics: 

● 724 paired SAR-RGB images 
● Multiple geographic locations and building types 
● Automatic semantic segmentation masks 
● Various imaging geometries and resolutions 

Validation Results: The synthetic data demonstrated effectiveness in training object 
detection models, with performance comparable to models trained on limited real SAR 
data. Cross-validation on real SAR datasets showed mIoU improvements of 8-12% 
when synthetic data augmented small real datasets. 

2.3 AI-Driven EO to SAR Translation (Nanyang Technological University) 

NTU researchers developed generative AI approaches for translating abundant optical 
imagery into synthetic SAR: 

Architecture Components: 

1. Conditional Generative Adversarial Networks (GANs):  
o Generator network learning optical-to-SAR mapping 
o Discriminator enforcing realistic SAR texture and speckle characteristics 
o Cycle consistency losses ensuring semantic preservation 

2. Physics-Informed Constraints:  
o SAR-specific loss functions capturing speckle statistics 
o Geometric consistency across polarization channels 
o Shadow and layover direction constraints 

Comparative Performance: Testing against baseline methods (Pix2Pix, CycleGAN, 
NICEGAN) showed the proposed approach achieved: 

● Superior texture realism (perceptual similarity scores 15-20% higher) 
● Better preservation of geometric structure (structural similarity index +0.12) 
● More accurate classification transfer (optical labels applicable to synthetic SAR 

with 85%+ accuracy) 

Application to Object Detection: Generated synthetic SAR enabled training robust 
detection models for 15 object categories with automatically transferred annotations 
from optical imagery: 



● Plane, ship, vehicle, storage tank, bridge, harbor, swimming pool, tennis court, 
basketball court, roundabout, baseball diamond, ground track field, small 
vehicle, helicopter, landslide 

Detection performance on real SAR imagery achieved mAP scores 18-25% higher than 
models trained only on limited real SAR data. 

2.4 Integration of Multiple Data Sources 

Both approaches demonstrated the value of leveraging complementary data 
modalities: 

Physical Simulation Advantages: 

● Explicit control over imaging parameters 
● Perfect ground truth generation 
● Ability to simulate rare conditions 

AI Translation Advantages: 

● Learns statistical relationships from real data 
● Captures subtle texture and radiometric characteristics 
● Adapts to actual sensor characteristics 

Hybrid Strategies: Combining physics-based simulation with AI-driven refinement 
offers optimal results—physics models provide structural accuracy while AI 
components add realistic texture and sensor-specific characteristics. 

3. Challenge 2: Foundation Models for Zero-Shot 
Generalization 

3.1 Limitations of Task-Specific Models 

Traditional remote sensing AI systems require separate models for each: 

● Geographic region (training on European data may not generalize to Asian 
landscapes) 

● Imaging condition (seasonal variations, atmospheric effects) 
● Sensor type (different satellites have unique radiometric characteristics) 
● Task (detection, segmentation, classification each require distinct 

architectures) 

This proliferation of specialized models creates: 

● Prohibitive training data requirements (10,000+ examples per task-region-sensor 
combination) 



● Deployment complexity (multiple large models consuming limited satellite 
storage) 

● Inflexibility (inability to respond to novel scenarios without retraining) 

3.2 Foundation Model Approach 

Foundation models, pre-trained on massive datasets and adaptable to diverse tasks, 
offer a paradigm shift for remote sensing AI. The workshop explored two 
complementary aspects: 

3.2.1 Compact Geospatial Foundation Models (University of Adelaide) 

Base Architecture: Starting from IBM/NASA's Prithvi-EO-2.0-300M—a Vision 
Transformer (ViT) backbone with masked autoencoder (MAE) pre-training on 
Harmonised Landsat-Sentinel-2 (HLS) imagery. 

Compactification Strategy: To enable onboard deployment, the Adelaide team applied 
dual MAE knowledge distillation: 

1. Teacher Model: Original Prithvi-300M (frozen)  
o 1024-dimensional patch embeddings 
o 12 transformer layers 
o 303M parameters 
o ~1157 MB model size (FP32) 

2. Student Models: Reduced variants  
o Prithvi-512: 512-dimensional embeddings → 76M parameters, 290 MB 
o Prithvi-256: 256-dimensional embeddings → 19M parameters, 73 MB 

Knowledge Distillation Process: 

● Student trained to match teacher's output embeddings, not original data 
reconstruction 

● Preserves semantic understanding while reducing capacity 
● Progressive distillation maintaining intermediate layer alignments 

Performance Analysis: 

Downstream Task Evaluation: Five tasks across diverse datasets 

Task Dataset Prithvi-300M Prithvi-256 Degradation 
Cloud Classification Sentinel-2 Cloud Mask 97.2% 95.2% -2.0% 
Cloud Segmentation Sentinel-2 Cloud Mask 90.1 mIoU 88.2 mIoU -1.9 mIoU 
Flood Detection Sen1Floods11 93.4% F1 91.8% F1 -1.6% F1 
Landslide Detection Landslide4Sense 87.6 mIoU 85.3 mIoU -2.3 mIoU 
Above-Ground Biomass ForestNet 48.2 RMSE 51.7 RMSE +3.5 RMSE 

The compact Prithvi-256 model maintains 92-98% of original performance while 
reducing model size by 94% and inference time by 65%. 



Specialized Task Heads: Each downstream task requires only small decoder networks: 

● Cloud classification: 2-layer MLP (133k-526k parameters, 0.51-2.01 MB) 
● Segmentation tasks: UNet decoder (726k-972k parameters, 2.77-3.71 MB) 
● Regression tasks: UPerNet decoder (2.87M-3.82M parameters, 10.95-14.56 MB) 

Task heads can be uploaded separately (10-15 MB each), enabling mission flexibility 
without re-uploading the entire foundation model encoder. 

3.2.2 Zero-Shot Detection and Segmentation (Nanyang Technological University) 

Challenges in Remote Sensing Zero-Shot Learning: 

1. Inter-class Similarity:  
o Basketball courts vs. tennis courts differ primarily in markings 
o Ships vs. large vehicles may appear similar in low-resolution imagery 
o Contextual information becomes critical for disambiguation 

2. Intra-class Variance:  
o Ships range from small fishing vessels to massive container ships 
o Buildings vary enormously in size, shape, and material 
o Perspective distortions at different satellite viewing angles 

3. Domain Gap:  
o Remote sensing imagery has top-down perspective unlike natural images 
o Object scales vastly differ (buildings span 10-100+ pixels) 
o Multispectral channels beyond RGB not present in vision pre-training 

datasets 

Architecture: KMA-ZSIS (Knowledge-grounded Mask Attention Zero-Shot Instance 
Segmentation) 

Component 1: Multi-Modal Feature Alignment 

● CLIP (Contrastive Language-Image Pre-training) image encoder extracts visual 
features 

● CLIP text encoder processes class descriptions 
● Knowledge-grounded Mask Attention (KMA) module aligns spatial features with 

class embeddings 
● Attention mechanism highlights class-relevant regions 

Component 2: Class-Agnostic Mask Generation 

● Proposal generator identifies potential object regions without class constraints 
● Mask generator creates precise segmentation boundaries 
● Operates on visual features alone—no semantic labels required during mask 

prediction 

Component 3: Zero-Shot Classification 



● Weighted classification head combines:  
o CLIP semantic similarity scores (text-image alignment) 
o Geometric context from regional features 
o Cache bank of prototypical embeddings from training 

Context-Aware Extension: RS-CLIP (Region-Aware Semantic Context Integration) 

Remote sensing objects rarely appear in isolation—context provides crucial 
disambiguation cues: 

Regional Context Encoding: 

1. Scene Context Branch:  
o Captures overall environment type (port, airport, urban, agricultural) 
o Processes full image with dilated convolutions 
o Generates scene-level embeddings 

2. Patch Embeddings:  
o Local feature representation of proposal regions 
o Maintains fine-grained spatial details 

3. Region-Aware Integration:  
o Transformer encoder fuses patch and scene embeddings 
o Adaptive region formation groups semantically similar patches 
o Learns which context scales matter for each object type 

Global Context Adaptation: 

● Instance-Class Similarity Index (ICSI): measures alignment of proposal features 
with class embeddings 

● Adaptive fusion weights determined by context relevance 
● Linear projection layers adapt CLIP features to remote sensing domain 

Experimental Validation: 

Dataset: SIOR (Salient Instance Object in Remote sensing) 

● 800 images, 2,000+ instances 
● 5 base classes (training): ship, vehicle, bridge, storage tank, harbor 
● 4 novel classes (zero-shot testing): small car, large vehicle, airplane, wind 

turbine 

Results: 

Method Novel mAP Base mAP Harmonic Mean 
Baseline ViT 42.3 68.5 52.1 
CLIP-based 56.8 72.1 63.5 
KMA-ZSIS (Ours) 68.4 76.3 72.2 
RS-CLIP (Ours) 73.9 79.1 76.4 



Context integration improved novel class detection by 5.5 mAP points, with particularly 
strong gains for ambiguous categories: 

● Small car vs. vehicle: +12% disambiguation accuracy 
● Ship in harbor vs. ship at sea: +8% accuracy improvement 

Generalization to Novel Datasets: 

The trained models transferred to unseen datasets without fine-tuning: 

● FAST (Fine-grained Object Categories): 65.3% mAP on 4 novel categories 
● DIOR (Object Detection in Optical Remote Sensing): 58.7% mAP on 8 novel 

categories 
● SODA-A (Small Object Detection): 48.2% mAP (challenging due to small object 

scales) 

Qualitative Analysis: 

Visualization of attention maps revealed: 

● RS-CLIP correctly attends to surrounding infrastructure for ships (docks, cranes 
suggest cargo vessels) 

● Runway context helps distinguish civilian vs. military aircraft 
● Roads and parking patterns differentiate vehicle types 
● Failure cases primarily occur when context is ambiguous or absent (isolated 

objects in featureless backgrounds) 

3.3 Data Efficiency Comparison 

Few-Shot Learning Experiments: 

Comparing zero-shot foundation models vs. fully-supervised ViT trained from scratch: 

Cloud Classification Task: 

Training Data Fraction ViT from Scratch Prithvi-256 GeoFM Prithvi-256 
(Pretrained Head) 

100% (full dataset) 94.2% Acc 95.0% Acc 95.8% Acc 
50% 91.3% Acc 94.1% Acc 94.6% Acc 
25% 85.7% Acc 91.8% Acc 92.3% Acc 
0% (zero-shot) N/A N/A 87.2% Acc 

Key Findings: 

● GeoFM with randomly initialized task head matches full training performance 
with only 50% of labeled data 

● Pre-trained task heads enable reasonable zero-shot performance (87% vs. 96% 
best-case) 



● Gains most pronounced in limited data regimes—foundation models reduce 
labeling needs by 50-75% 

Flood Detection Task: 

Training Data Fraction ViT from Scratch Prithvi-256 GeoFM 
100% 89.2% F1 (water) 93.1% F1 (water) 
50% 82.5% F1 90.8% F1 
25% 74.3% F1 86.9% F1 

Even with 75% reduction in training data, the foundation model approach achieves F1 
scores within 6 points of full supervision, while the from-scratch model degrades by 15 
points. 

3.4 Implications for Mission Design 

Foundation models fundamentally change satellite AI deployment strategies: 

Traditional Approach: 

● Pre-mission: Identify specific tasks, collect training data, train specialized 
models 

● Launch: Deploy fixed models 
● Operations: Execute predetermined tasks only 
● Limitations: Cannot adapt to unexpected scenarios, novel object categories, or 

changing mission priorities 

Foundation Model Approach: 

● Pre-mission: Deploy general-purpose encoder (one-time ~300 MB upload) 
● Launch: Basic task heads for initial objectives 
● Operations:  

o Upload new task heads as priorities evolve (10-20 MB per task) 
o Zero-shot inference on unexpected targets without updates 
o Few-shot adaptation with minimal labeled examples from ground station 

● Advantages: Flexible mission evolution, rapid response to emerging needs, 
reduced pre-launch uncertainty 

4. Challenge 3: Reliable Edge Computing in Space 

4.1 Constraints of Onboard AI Processing 

Space-qualified computing hardware faces extreme constraints compared to terrestrial 
AI infrastructure: 

Hardware Limitations: 

● Processing power: 10-100x slower than commercial GPUs  



o Rad-hardened chips trail commercial tech by ~5 years 
o Clock speeds: hundreds of MHz vs. GHz terrestrial processors 

● Memory: 4-16 GB RAM (vs. 80+ GB for modern GPUs) 
● Storage: 10-100 GB solid-state (vs. TB-scale terrestrial systems) 
● Power: 5-10W for AI accelerator (vs. 300-700W for datacenter GPUs) 
● Thermal management: passive cooling only, strict temperature ranges 

Radiation Effects: 

● Single-Event Upsets (SEUs): bit flips in memory and computation  
o Low-Earth Orbit: ~10^-7 upsets per bit per day 
o Geostationary/beyond: ~10^-5 upsets per bit per day (South Atlantic 

Anomaly, solar events) 
● Cumulative radiation damage: gradual performance degradation 
● Mitigation: Error correction, redundancy, rad-hardened components (expensive, 

lower performance) 

Communication Constraints: 

● Downlink bandwidth: 10-100 Mbps during ground station passes 
● Pass duration: 5-15 minutes per ground station per orbit 
● Total daily downlink: ~1-10 GB (vs. TB of raw imagery collected) 
● Latency: Minutes to hours between capture and ground processing 

Mission Justification for Onboard AI: Despite constraints, onboard processing enables: 

● Prioritized downlinking (transmit only high-value imagery) 
● Real-time alerts (disasters, military activity, maritime incidents) 
● Autonomous tasking (retarget sensors based on detected events) 
● Reduced ground processing burden (send analytics, not raw pixels) 

4.2 Kanyini Mission: Flight-Representative Testing 

Mission Overview: 

● Launch: August 2024 
● Orbit: Sun-synchronous LEO, 500km altitude 
● Payload: Hyperspectral imager (400-1000nm, 120 spectral bands) 
● Platform: 6U CubeSat 
● Partners: SmartSat CRC, University of South Australia, University of Adelaide 

Onboard Computing: 

● Intel Myriad 2 Vision Processing Unit (VPU)  
o 12 SHAVE (Streaming Hybrid Architecture Vector Engine) cores 
o 4GB LPDDR3 memory 
o Neural compute engine optimized for CNN inference 
o Power: 1-2W typical, 2.5W peak 



o FP16 computation 

Ground Testing Infrastructure: 

Hardware Emulator: 

● Development board matching flight hardware specs 
● Controlled power/thermal monitoring 
● Allows rapid software iteration before flight 

HyperScout-2 Engineering Model: 

● Flight-representative payload interface 
● Simulates actual data flows and timing 
● Validates end-to-end data processing pipeline 

Model Deployment Process: 

1. Model Optimization:  
o Training: PyTorch on GPU workstations (FP32) 
o Quantization: Convert to FP16 (halves memory, minimal accuracy loss) 
o Compilation: OpenVINO toolkit generates optimized VPU executables 
o Pruning: Remove redundant parameters (10-15% size reduction with <1% 

accuracy loss) 
2. Flight Software Integration:  

o Real-time operating system (RTOS) with deterministic scheduling 
o Memory management ensuring no swapping/paging 
o Watchdog timers reset on inference timeout/failure 
o Error correction codes (ECC) on critical data structures 

3. Validation Testing:  
o Functional: Verify output correctness across input ranges 
o Performance: Measure inference time, power consumption, memory 

usage 
o Fault injection: Simulate bit flips, verify error handling 
o Thermal: Test across operational temperature range (-40°C to +85°C) 

4.3 Performance Results 

Downstream Task Execution on Flight Hardware: 

Cloud Detection (Tile-based Classification): 

● Task: Classify 224×224 tiles as cloudy/clear 
● Model: Prithvi-256 encoder + 2-layer MLP head 
● Inference time: 5.36 seconds per tile 
● Memory usage: 636 MB peak 
● Power: 5.76W peak, 4.95W average 
● Energy: 0.72 Wh per tile 



● Accuracy (engineering model testing): 97.1% (vs. 97.2% GPU baseline) 

Cloud Segmentation: 

● Task: Pixel-wise cloud mask generation 
● Model: Prithvi-256 encoder + UNet decoder 
● Inference time: 5.50 seconds per tile 
● Memory usage: 633 MB peak 
● Power: 5.77W peak, 4.94W average 
● Energy: 0.76 Wh per tile 
● mIoU (engineering model): 90.1 (vs. 90.1 GPU baseline) 

Flood Detection Segmentation: 

● Task: Identify water vs. land vs. cloud 
● Model: Prithvi-256 encoder + UPerNet decoder 
● Inference time: 5.68 seconds per tile 
● Memory usage: 634 MB peak 
● Power: 6.20W peak, 4.97W average 
● Energy: 0.79 Wh per tile 
● F1 (water, engineering model): 91.6% (vs. 91.6% GPU baseline) 

Key Observations: 

FP32 vs. FP16 Accuracy Impact: 

● Classification tasks: <0.5% accuracy degradation 
● Segmentation tasks: <0.3 mIoU degradation 
● Regression tasks: 2-3% RMSE increase (most sensitive to quantization) 
● Conclusion: FP16 acceptable for most remote sensing tasks 

Power and Thermal: 

● Peak power (~6W) well within VPU limits 
● Typical power (~5W) sustained indefinitely without thermal issues 
● Engineering model testing: Stable operation at +60°C ambient 
● Flight operations plan: Inference during eclipse (cooler thermal environment) 

Throughput Analysis: 

● ~650 tiles per hour (continuous inference, no downlink) 
● Typical hyperspectral capture: 5000×5000 pixels = 484 tiles 
● Full scene processing: ~45 minutes 
● Realistic duty cycle (25%, accounting for capture/downlink): 2-3 full scenes per 

day 
● Compared to ground processing: Results available within 1 hour vs. 6-12 hours 

for full downlink and processing 



Failure Mode Testing: 

● Watchdog timeout recovery: <2 seconds reset and restart 
● Memory exhaustion handling: Graceful degradation (skip tiles if memory 

constrained) 
● Simulated bit flips: Error detection in 98.7% of cases, corrected or flagged 

4.4 ISS Demonstration: IMAGIN-e Payload 

Mission Context: 

● Platform: International Space Station, Bartolomeo external platform 
● Deployed: Q4 2024 (currently operational) 
● Partners: Thales Alenia Space, Microsoft, ESA 
● Duration: 1-year demonstration mission 

Edge Computing Hardware: 

● 16 ARM Cortex-A72 cores (quad-core configuration, 4 units) 
● 16 GB RAM total 
● 10 GB usable storage for AI models 
● Power budget: 25W for computing payload 
● Thermal: Active cooling available (ISS advantage) 

Microsoft Azure Orbital Space SDK: 

● Containerized AI model deployment 
● Ground-based model updates via S-band uplink 
● Telemetry and logging infrastructure 
● Over-the-air (OTA) software updates 

Foundation Model Deployment: 

Baseline Configuration: 

● Prithvi-300M encoder (full-size foundation model) 
● Multiple task heads deployed simultaneously:  

o Cloud detection (2 MB) 
o Flood segmentation (15 MB) 
o Agricultural monitoring (12 MB) 
o Urban change detection (18 MB) 

● Total footprint: ~1.3 GB (encoder + 4 task heads) 

Operational Workflow: 

1. Capture imagery (simulated downlinked RGB Sentinel-2 data) 
2. Route to appropriate task head based on ground command or autonomous 

scene classification 



3. Run inference 
4. Downlink compact analytics (segmentation masks, class labels, confidence 

scores) ~1% of raw image size 
5. Ground operators review results, request specific raw imagery if needed 

Results (Preliminary): 

● Successful deployment and operation for 3+ months 
● Average inference time: 8-12 seconds per 512×512 tile (varies by task head 

complexity) 
● 99.2% inference success rate (failures mainly due to memory constraints on 

complex scenes) 
● Demonstrated OTA task head upload: New "ship detection" head uploaded 

successfully (14 MB, 8-minute transfer) 
● Power consumption: 18-22W during inference (within budget) 

Radiation Effects: 

● ISS in LEO, ~400 km altitude, partially shielded by Earth's magnetosphere 
● Observed SEU rate: ~2-3 per day (logged in telemetry) 
● Impact: 1 inference failure over 90 days attributed to uncorrected bit flip 
● ARM Cortex-A72 includes ECC on caches, significant hardware resilience 

4.5 Robustness to Radiation-Induced Faults 

Bit Flip Simulation Studies: 

To assess model vulnerability, researchers inject random bit flips in deployed models: 

Methodology: 

● Randomly flip N bits in model weights (simulating SEU without correction) 
● Re-run inference on test set 
● Measure accuracy degradation vs. number of flips 

Results for Prithvi-256 (19M parameters, ~76 MB): 

Number of Bit 
Flips 

Cloud Classification 
Acc 

Cloud Segmentation 
mIoU 

Flood Detection 
F1 

0 (baseline) 95.2% 88.2% 91.6% 
1 95.1% 88.1% 91.5% 
10 94.8% 87.9% 91.2% 
100 93.4% 86.5% 89.8% 
1000 87.2% 78.3% 82.1% 
10000 52.6% 41.2% 47.3% 

Key Findings: 



● Single-bit flips: Minimal impact (<0.5% degradation) 
● Moderate corruption (100 flips, ~0.0005% of parameters): <2% degradation 
● Severe corruption (1000 flips): Significant but often mission-acceptable 

degradation 
● Catastrophic failure threshold: ~10,000 flips (0.05% of parameters) 

Redundancy and Error Correction: 

Hardware ECC: 

● Memory ECC: Single-error correction, double-error detection (SECDED) 
● Typical overhead: 12.5% (8 parity bits per 64 data bits) 
● Reduces effective memory by ~10% but prevents most SEUs 

Software Strategies: 

● Periodic model checksum verification 
● Re-upload weights if corruption detected (via stored hash) 
● Ensembling: Run inference with multiple weight snapshots, vote on results (3x 

computational cost but high resilience) 

Graceful Degradation: 

● Prioritize protection of early layers (capture low-level features, less redundancy) 
● Later layers more redundant (higher-level semantic features robust to small 

perturbations) 
● Critical layers (final classification head) protected with strongest ECC 

Comparison: Foundation Models vs. Specialized Models: 

Hypothesis: Foundation models' redundancy (trained on massive diverse data) 
provides inherent robustness. 

Experiment: Compare bit flip resilience of: 

1. Prithvi-256 (foundation model, 19M params) 
2. Task-specific ViT trained from scratch (15M params, comparable capacity) 

Number of Bit Flips Foundation Model Acc Specialized Model Acc 
100 93.4% 91.8% 
500 90.1% 85.6% 

1000 87.2% 76.3% 

Foundation models maintain higher accuracy under identical fault conditions, likely 
due to: 

● Broader feature representations (less reliance on specific weights) 
● Pre-training on diverse data creates robust embeddings 



● Over-parameterization relative to downstream task provides redundancy 

5. Multimodal AI for Natural Disaster Monitoring 

5.1 Beyond Computer Vision 

Limitations of Imagery-Only Approaches: 

Satellite imagery provides rich spatial information but lacks critical context for disaster 
monitoring: 

● Temporal lag: Optical satellites require clear skies (clouds obscure disasters) 
● Limited physics: Images capture reflected light, not underlying processes 
● No predictive capability: Imagery is reactive, not anticipatory 

Value of Complementary Data Modalities: 

Atmospheric Data: 

● Temperature profiles: Identify heat anomalies (wildfires, volcanic activity) 
● Humidity and precipitation: Predict flood risk, track storm development 
● Wind patterns: Model fire spread, pollution dispersal 
● Pressure systems: Early warning for tropical cyclones 

Sensor Data: 

● Seismic measurements: Earthquake detection, aftershock prediction 
● Ocean buoys: Tsunami wave height, sea surface temperature 
● River gauges: Real-time flood levels 
● Weather stations: Ground truth for atmospheric models 

SAR Imagery: 

● All-weather capability: Penetrates clouds, operates day/night 
● Coherent change detection: Millimeter-scale surface deformation 
● Flood extent mapping: Water vs. land discrimination regardless of visibility 

5.2 Unified Multimodal Foundation Model (NTU Research) 

Architecture Design: 

Modality-Specific Encoders: 

1. SAR Multispectral Encoder:  
o Input: PolSAR data (HH, HV, VV polarizations) + derived products 

(coherence, entropy) 
o Architecture: ViT backbone, specialized positional encoding for SAR 

geometry 



o Output: 256-dimensional embedding per spatial patch 
2. Atmospheric Data Encoder:  

o Input: 3D gridded atmosphere (temperature, humidity, wind at multiple 
pressure levels) 

o Architecture: 3D convolutional network 
o Output: 256-dimensional embedding per spatial location 

3. Optical Image Encoder:  
o Input: Multispectral satellite imagery (RGB + NIR + SWIR bands) 
o Architecture: Shared ViT backbone with SAR encoder (transfer learning) 
o Output: 256-dimensional embedding per spatial patch 

Modality Fusion: 

● Self-attention over concatenated embeddings 
● Learnable modality-specific position encodings 
● Cross-attention between modalities captures complementary information 
● Output: Unified 256-dimensional multimodal embedding 

Self-Supervised Pre-Training: 

Contrastive Learning Objective: 

● Positive pairs: Different modalities observing same geographic location at same 
time 

● Negative pairs: Same modality, different locations or times 
● Loss: Maximize agreement between positive pairs, minimize for negatives 
● Encourages learning modality-invariant representations 

Masked Reconstruction: 

● Randomly mask patches in each modality 
● Predict masked content from other modalities 
● Teaches model to leverage complementary information 

5.3 Application: Flood Prediction and Mapping 

Task Definition: Given multimodal inputs (SAR, optical, atmospheric data), predict: 

1. Flood probability map (next 24 hours) 
2. Flood extent map (current flooded areas) 

Dataset Construction: 

● Historical flood events: 150 floods across Southeast Asia (2018-2023) 
● Co-located observations:  

o Sentinel-1 SAR (pre- and post-flood) 
o Sentinel-2 optical (when available) 
o ERA5 atmospheric reanalysis (temperature, precipitation, humidity) 



o Ground truth: Copernicus Emergency Management Service flood maps 

Model Configuration: 

● Encoder: Unified multimodal foundation model (pre-trained on 500K global 
observations) 

● Task head: UNet-style decoder for dense prediction 
● Training: Fine-tune on 120 flood events, test on 30 held-out events 

Baseline Comparisons: 

Method Modalities Flood Detection F1 Flood Prediction 
AUC 

SAR-only SAR 85.3% 72.1% 
Optical-only Optical 78.6% (clouds limit 

data) 
68.4% 

Atmosphere-only Temperature, precip, 
humidity 

N/A 74.8% 

SAR + Optical (late 
fusion) 

SAR + Optical 87.1% 75.3% 

Multimodal (ours) SAR + Optical + 
Atmosphere 

91.7% 82.6% 

Key Findings: 

Flood Detection (Reactive): 

● SAR critical for cloud-penetration, capturing flood extent even during storms 
● Optical adds limited value during event (clouds) but helps baseline land cover 
● Atmospheric data provides minimal direct detection benefit 
● Multimodal fusion improves by 4-6 F1 points over SAR-only 

Flood Prediction (Proactive): 

● Atmospheric data most informative (precipitation forecasts) 
● SAR/optical provide contextual land cover (urban vs. agricultural areas have 

different flood dynamics) 
● Multimodal approach achieves 10+ point AUC improvement over any single 

modality 
● 24-hour lead time: 82.6% AUC (usable for early warnings) 
● 48-hour lead time: 76.3% AUC (degrades but still valuable) 

Computational Cost: 

● Multimodal model: 45M parameters (vs. 19M for Prithvi-256 image-only) 
● Inference time: 12 seconds per tile (vs. 6 seconds image-only) 
● Feasible for near-real-time edge deployment with modern accelerators 



5.4 Future Directions: Integration with Physics Models 

Current Limitations: 

● AI models are data-driven, lack physical understanding 
● Extrapolation beyond training distribution unreliable 
● Cannot incorporate domain knowledge (fluid dynamics, thermodynamics) 

Physics-Informed Neural Networks (PINNs): 

● Hybrid models combining neural networks with differential equation solvers 
● Loss functions include physics-based penalties (e.g., conservation laws) 
● Example: Flood routing models constrained by shallow water equations 

Potential Architecture: 

1. Neural emulator: Fast surrogate for expensive physics simulation 
2. Residual correction: NN learns deviation of real observations from physics 

model 
3. Uncertainty quantification: Estimate confidence in predictions based on 

physics-data agreement 

Advantages: 

● Improved extrapolation (physics guides beyond training data) 
● Reduced data requirements (physics provides inductive bias) 
● Interpretability (model respects known physical laws) 

Challenges: 

● Computational cost (solving PDEs on-device is demanding) 
● Model complexity (tuning hybrid systems requires both ML and domain 

expertise) 
● Validation (ensuring NN doesn't exploit loopholes in approximate physics) 

6. Barriers to Deployment and Recommended Strategies 

6.1 Technical Barriers 

Barrier Impact Proposed Mitigation 
Data scarcity Limits training of 

specialized models 
Synthetic data generation, transfer learning 
from foundation models 

Limited onboard 
compute 

Restricts model 
complexity 

Model compression (quantization, pruning), 
efficient architectures (MobileNets, 
EfficientNets) 

Radiation-induced 
faults 

Degrades inference 
accuracy 

Hardware ECC, software checksums, 
ensemble redundancy 



Communication 
bandwidth 

Limits model 
updates 

Differential uploads (only changed 
parameters), compressed task heads 

Power constraints Reduces inference 
throughput 

Dynamic voltage scaling, scheduled inference 
during eclipse 

6.2 Data and Benchmarking Needs 

Current Gaps: 

● Lack of standardized benchmarks: Different papers use incompatible datasets, 
metrics 

● Limited geographic diversity: Most datasets focus on North America/Europe 
● Temporal sparsity: Few datasets with dense time series for change detection 
● Modality gaps: SAR, hyperspectral datasets lag behind optical 

Recommended Actions: 

1. Community Benchmark Initiatives:  
o Standardized train/val/test splits for key datasets (DOTA, DIOR, SIOR, 

etc.) 
o Common evaluation protocols and metrics 
o Regular leaderboard challenges (similar to ImageNet for natural images) 

2. Data Collection Campaigns:  
o Partner with space agencies for coordinated data releases 
o Focus on underrepresented regions (Africa, Southeast Asia, South 

America) 
o Time-series datasets for disaster monitoring (before/during/after events) 

3. Annotation Efficiency:  
o Invest in semi-supervised and self-supervised methods reducing labeling 

needs 
o Crowdsourcing platforms for large-scale annotation (quality control 

critical) 
o Active learning: Prioritize labeling images that most improve model 

performance 

6.3 Model Sharing and Reproducibility 

Challenges: 

● Research code often incomplete, undocumented, or incompatible with 
deployment environments 

● Trained models rarely released due to concerns about commercial sensitivity 
● Computational requirements for training foundation models (millions of USD) 

prohibitive for most research groups 

Recommendations: 

1. Open Model Zoos:  



o Centralized repository of pre-trained geospatial AI models (analogous to 
Hugging Face for NLP) 

o Include model cards: Dataset, training procedure, performance metrics, 
known limitations 

o Versioning and provenance tracking 
2. Deployment-Ready Formats:  

o Provide models in multiple formats: PyTorch, ONNX, OpenVINO, 
TensorFlow Lite 

o Include optimization scripts (quantization, pruning) 
o Document hardware requirements and expected performance 

3. Reproducibility Standards:  
o Journals/conferences require code and model release for acceptance 
o Automated validation: Re-run training, verify reported metrics 
o Containerized environments (Docker) ensuring consistent execution 

6.4 Collaboration Between Academia, Industry, and Space Agencies 

Current Landscape: 

● Academia: Cutting-edge algorithms, limited access to high-quality data and 
flight opportunities 

● Industry: Operational expertise, proprietary datasets, risk-averse deployment 
● Space Agencies: Mission platforms, long-term funding, coordination challenges 

Recommended Collaboration Models: 

Public-Private Partnerships: 

● Co-funded research programs (e.g., ESA's φ-lab, SmartSat CRC model) 
● Academia develops novel algorithms, industry/agency provides data and 

deployment pathways 
● IP agreements clarified upfront 

Hosted Payload Programs: 

● Space agencies provide flight slots for academic/commercial AI experiments 
● Standardized interfaces reduce integration costs 
● Examples: ISS IMAGIN-e, Kanyini mission 

Data Sharing Agreements: 

● Tiered access: Open data for research, commercial licensing for operational use 
● Embargo periods (e.g., 6-12 months) before public release 
● Anonymization/redaction for sensitive regions 

Joint Benchmarking Campaigns: 

● Co-design evaluation protocols meeting both research and operational needs 



● Regular competitions with real mission scenarios 
● Prizes/contracts for top performers (incentivizes industry participation) 

6.5 Standardization and Interoperability 

Problem: 

● Fragmented tooling: Different frameworks, formats, and interfaces across 
organizations 

● Vendor lock-in: Proprietary hardware/software ecosystems 
● Deployment friction: Models trained in one environment may not run in another 

Proposed Standards: 

Data Formats: 

● Adopt open standards (e.g., Cloud-Optimized GeoTIFF, STAC metadata) 
● Common coordinate systems and projections 
● Metadata schemas for multimodal data (capture conditions, sensor specs) 

Model Formats: 

● ONNX for cross-framework compatibility 
● Standard quantization formats (e.g., INT8, FP16) 
● Defined input/output interfaces (image dimensions, channel ordering, pre/post-

processing) 

APIs and Protocols: 

● RESTful APIs for on-orbit inference services 
● gRPC for low-latency ground-to-space communication 
● MQTT for telemetry and status reporting 

Benefits: 

● Accelerated deployment: Pre-validated models run on diverse platforms 
● Reduced duplication: Shared tooling and infrastructure 
● Lower barriers to entry: Smaller organizations can participate 

7. Conclusions and Future Outlook 

7.1 Key Takeaways 

This workshop synthesized cutting-edge research addressing three critical challenges 
in space-based AI: 

1. Data Scarcity: Demonstrated viable pathways for training robust models with 
limited labeled data through synthetic data generation (physics simulation, 



generative AI) and foundation models enabling transfer learning. Synthetic SAR 
generation achieved 85%+ classification transfer accuracy, while foundation 
models reduced labeling needs by 50-75%. 

2. AI Generalization: Showcased zero-shot learning techniques allowing models to 
recognize novel object categories and adapt to new environments without 
retraining. Context-aware architectures specifically designed for remote sensing 
improved detection mAP by 5-8 points over general-purpose vision models. 

3. Edge Deployment: Validated compact geospatial foundation models on flight-
representative hardware, achieving 5-6 second inference latency, 5-7W power 
consumption, and maintaining 92-98% of full-scale model accuracy. Successful 
deployment on ISS (IMAGIN-e) and Kanyini satellite demonstrates operational 
readiness. 

7.2 Emerging Trends 

Multimodal Foundation Models: The next generation of geospatial AI will integrate 
diverse data sources (SAR, optical, hyperspectral, atmospheric, sensor networks) 
within unified architectures. Self-supervised pre-training on massive multimodal 
datasets will enable: 

● Better generalization across modalities (transfer learning from data-rich to data-
scarce modalities) 

● Improved robustness (degraded or missing modalities handled gracefully) 
● Enhanced prediction (complementary information improves forecasting) 

Early results demonstrate 10+ point accuracy improvements for disaster monitoring 
tasks when combining satellite imagery with atmospheric data. 

Physics-Informed AI: Hybrid models incorporating domain knowledge (electromagnetic 
scattering theory, atmospheric dynamics, fluid mechanics) with data-driven learning 
will: 

● Improve extrapolation beyond training distributions 
● Reduce data requirements through physics-based inductive biases 
● Enhance interpretability and trustworthiness 

Challenges include computational cost (solving PDEs onboard) and complexity 
(requiring both ML and domain expertise). 

Adaptive and Continual Learning: Foundation models enabling on-orbit learning will 
allow satellites to: 

● Fine-tune models using in-situ data (adapt to specific geographic regions or 
seasons) 

● Learn from user feedback (ground operators correct errors, model incorporates 
corrections) 

● Handle distribution shift (Earth's surface evolves, models must track changes) 



Technical challenges include limited onboard compute for training and catastrophic 
forgetting (new knowledge overwriting old). 

7.3 Recommended Research Priorities 

1. Efficient Model Architectures:  
o Develop transformer variants optimized for remote sensing (accounting 

for spatial invariance, multi-scale objects) 
o Explore mixture-of-experts architectures (activate relevant subnetworks 

based on scene content) 
o Hardware-aware neural architecture search (co-design models and 

accelerators) 
2. Self-Supervised Learning:  

o Leverage temporal consistency (same location at different times should 
have consistent semantics) 

o Exploit multi-view geometry (different satellite viewing angles provide 
complementary information) 

o Cross-modal self-supervision (SAR and optical of same scene should 
have aligned features) 

3. Trustworthy AI:  
o Uncertainty quantification (models must indicate confidence, especially 

for safety-critical applications) 
o Explainability (why did model make particular detection/classification?) 
o Robustness certification (formal guarantees of performance under 

adversarial conditions or bit flips) 
4. Human-AI Collaboration:  

o Interactive labeling tools (AI suggests annotations, human refines) 
o Active learning (model requests labels for most informative examples) 
o Human-in-the-loop deployment (ground operators validate critical 

inferences) 
5. End-to-End Mission Optimization:  

o Joint optimization of sensor tasking, onboard processing, and downlink 
scheduling 

o Reinforcement learning for autonomous satellite operations 
o Multi-satellite coordination (constellations sharing information, 

distributing computation) 

7.4 Vision for 2030 

Technical Capabilities: 

● Orbital AI Processing: 90%+ of satellite imagery processed onboard, only high-
value analytics downlinked 

● Foundation Models as Standard: Every satellite deploys general-purpose 
encoder, mission-specific heads uploaded as needed 

● Real-Time Disaster Response: Automated detection and alerting within 30 
minutes of image capture 



● Autonomous Constellations: Swarms of satellites coordinate observations, 
distribute computation, adapt to dynamic priorities 

Ecosystem Maturity: 

● Open Model Repositories: Comprehensive libraries of pre-trained geospatial AI 
models, freely available 

● Standardized Interfaces: Plug-and-play model deployment across diverse 
satellite platforms 

● Thriving Commercial Sector: Dozens of companies offering AI-as-a-service for 
satellite operators 

● Global Accessibility: Developing nations benefit from advanced AI capabilities 
without building infrastructure 

Societal Impact: 

● Climate Monitoring: Continuous tracking of deforestation, ice melt, ocean 
health with meter-scale resolution 

● Disaster Mitigation: Early warnings save thousands of lives annually, recovery 
efforts optimized through AI-guided damage assessment 

● Sustainable Development: AI-driven insights inform policy, optimize resource 
management, monitor SDG progress 

● Scientific Discovery: Automated analysis of vast satellite archives reveals 
previously hidden patterns and phenomena 

7.5 Call to Action 

The convergence of AI and space technology offers unprecedented opportunities to 
address global challenges. Realizing this potential requires: 

● Sustained Investment: Multi-year funding for foundational research and 
demonstration missions 

● Open Collaboration: Breaking down silos between academia, industry, and 
government 

● Ethical Governance: Proactive development of guidelines for responsible AI 
deployment in space 

● Capacity Building: Training next generation of researchers at the intersection of 
AI and space science 

● Public Engagement: Communicating the value and possibilities of space-based 
AI to broader society 

The workshop participants commit to advancing these priorities through continued 
research, open publication of models and datasets, and collaboration with the global 
community. The future of Earth observation is intelligent, autonomous, and accessible—
the foundation has been laid, and the journey forward is underway. 
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